Creep of .ALPHA.2+.BETA. Titanium Aluminide Alloys.
نویسندگان
چکیده
منابع مشابه
Development of Oxidation Protection Coatings for Gamma Titanium Aluminide Alloys
Metallic material systems play a key role in meeting the stringent weight and durability requirements for reusable launch vehicle (RLV) airframe hot structures. Gamma titanium aluminides (γTiAl) have been identified as high-payoff materials for high-temperature applications. The low density and good elevated temperature mechanical properties of γ-TiAl alloys make them attractive candidates for ...
متن کاملA Model for Creep and Creep Damage in the γ-Titanium Aluminide Ti-45Al-2Mn-2Nb
Gamma titanium aluminides (γ-TiAl) display significantly improved high temperature mechanical properties over conventional titanium alloys. Due to their low densities, these alloys are increasingly becoming strong candidates to replace nickel-base superalloys in future gas turbine aeroengine components. To determine the safe operating life of such components, a good understanding of their creep...
متن کاملPower-law creep in near-equiatomic nickel–titanium alloys
The compressive creep behavior of nickel-rich B2–NiTi (with 50–140 lm grain size) was studied over the stress range 3–11 MPa and the temperature range 950–1100 C. The stress exponent (n = 2.7) and activation energy (Q = 155 kJ mol ) are compared with a literature review of NiTi creep studies performed over lower temperature and/or higher stresses. Possible explanations for discrepancies between...
متن کاملTRANSFORMATION SUPERPLASTICITY OF SUPER a2 TITANIUM ALUMINIDE
ÐTransformation superplasticity of an intermetallic Ti3Al-based alloy (Super a2) is demonstrated by thermal cycling about the a2/b transformation temperature range under a uniaxial tensile biasing stress. Failure strains up to 610% were recorded at a stress of 3 MPa, compared with 110% for deformation by isothermal creep at the same stress. The strain increment produced during each half-cycle i...
متن کاملShock response of a gamma titanium aluminide
Potential use of -TiAl alloys in aerospace and other structural applications require knowledge of their impact behavior for better evaluation and modeling. In the present study plate impact experiments are conducted using a single-stage gas gun to better understand the shock behavior of the recently developed class of gamma titanium aluminide alloys—the Gamma-Met PX. The Gamma-Met PX showed sup...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ISIJ International
سال: 1991
ISSN: 0915-1559
DOI: 10.2355/isijinternational.31.1139